

Novel homozygous NPC1 mutation diagnosed in a 2 month old with cholestasis by rapid Whole-Genome sequencing

Amber Hildreth DO, Kristen Wigby, MD, Shimul Chowdhury Ph.D, Shareef Nahas Ph.D, Jaime Barea, MD, Paulina Ordonez MD, David Dimmock MD, Stephen Kingsmore MD for the Rady Children's Institute for Genomic Medicine

BACKGROUND

- •Niemann-Pick Type C disease (NPC) is an autosomal recessive inborn error of intracellular cholesterol trafficking
- Progressive neurologic disorder
- May present with cholestasis in infancy
- Targeted therapy approved in EU
- Promising experimental therapy available

• Term male

- Non-consanguineous parents
- •Admitted at 7 weeks of age for failure to thrive, direct hyperbilirubinemia and elevated hepatic transaminases

CASE

- Exam: jaundice, hepatosplenomegay, clinodactyly, hypotonia

A: Weight (kg) B: Length (cm) C: Head circumference (cm)

DIAGNOSTIC WORKUP

Electron microscopy: numerous concentric lamellar bodies

WGS RESULTS

Genomic location	HGVS cDNA	HGVS F
Chr18: 21119857 (on assembly GRCh38	NM_000271.3 c.2713C>T	p.Gln90
	Genomic location Chr18: 21119857 (on assembly GRCh38	Genomic location HGVS cDNA Chr18: 21119857 NM_000271.3 (on assembly c.2713C>T GRCh38 Keiner

> 40

> 98%

> 94% > 80%

2.5-6.0M 2.5-6.0M

25000-30000

0.5-0.61 2-2.2 (2.8-3)

pct

	100023-proban
Sex	M verified
Yield: raw/bulk	195.8
% mapped	98.90%
% duplicates	12.11%
Yield	170.4
Insert size: Mean +/- std.dev	352.4+/-98.98
Average and median coverage across genome	51.0
Average coverage over OMIM genes	51.0
# of OMIM genes with coverage at <10X (and list)	254
# of OMIM genes with 100% coverage at >=10X	98.2%
# of OMIM genes with 100% coverage at >=20X	96.8%
# of OMIM genes with 100% coverage at >=30X	86.9%
# of genes with 100% coverage at >=40X	40.0%
Variation (VCF) metrics	
# of calls Total	4613310
# of PASS calls	4539914
# of calls Total coding	25211
Total # of SNVs	3773668 [81.80
Total # of Indels	839642 [18.20
Hom/Het ratio (in coding regions)	0.84 (0.97)
Ti/Tv ratio (in coding regions)	2.03 (2.93)
# of het calls (# of hom call)	2565342 (216009
In-silico sample swap check	n/a
Automated upload of VCF to Omicia	PASS
Inform sign-out of analysis-ready state	PASS
Detect sample analysis completion state on Omicia	PASS
Update LIMS	TBD
Download annotated VCF to RCI	TBD

- therapy
- such a young child

Very Strong	Null variant (nonsense, frameshift, ±1 or 2 splice site position, initiation codon, exon deletion) in gene where LOF known to cause disease	
Strong	 Same amino acid change as previously established pathogenic variant De novo in a patient with the disease and no family history Functional studies show damaging effect on the gene Prevalence in affected individuals significantly greater than controls 	
Moderate	 Located in mutational hot spot/functional domain without benign variation Absent from controls For recessive disorders, detected in trans with a pathogenic variant Protein length changed by in-frame indel in nonrepeat region or stoploss Novel missense at amino acid where different missense known to be pathogenic Assumed de novo, but without confirmation of paternity and maternity 	
Supporting	 Cosegregation with disease in multiple affected family members in gene known to cause disease <u>Missense variant in gene with low rate of benign missense variants and</u> where missense variants commonly cause disease <u>Multiple computational tools call deleterious</u> <u>Phenotype highly specific for disease with single genetic etiology</u> Reputable source reports as pathogenic, but unpublished 	

CLINICAL COURSE

 Started on Miglustat therapy • WGS results reported 16 days before clinical testing

DISCUSSION

 Youngest patient diagnosed with NPC • Youngest patient to be started on Miglustat •Rapid WGS allows for timely diagnosis and early targeted

• Early diagnosis prompts debate regarding initiating therapy in

FUNDING

 Supported by Rady Children's Hospital, and National Institute of Child Health and Human Development and National Human Genome Research Institute grant U19HD077693