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ABSTRACT

The VAAST pipeline is specifically designed to identify disease-associated alleles in
next-generation sequencing data. In the protocols presented in this paper, we outline
the best practices for variant prioritization using VAAST. Examples and test data are
provided for case-control, small pedigree, and large pedigree analyses. These protocols
will teach users the fundamentals of VAAST, VAAST 2.0, and pVAAST analyses. Curr.
Protoc. Hum. Genet. 81:6.14.1-6.14.25. C© 2014 by John Wiley & Sons, Inc.
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INTRODUCTION

The Variant Annotation Analysis and Search Tool (VAAST) is a software suite for disease
gene discovery from next-generation sequence (NGS) data. The central component of
VAAST is a probabilistic disease-gene finder that combines amino acid substitution
(AAS) and allele-frequency information to search for and prioritize genes harboring
damaging alleles (Yandell et al., 2011). The latest VAAST release, 2.0, incorporates robust
models of cross-species sequence conservation, which further improve the accuracy in
differentiating between benign and disease-causing variation (Hu et al., 2013). The
VAAST package also includes the Variant Selection Tool (VST) for filtering, combining,
and manipulating large genomic datasets, and the Variant Annotation Tool (VAT) for
detailed genomic variant annotation. VAAST is primarily designed for human disease
studies (Rope et al., 2011; McElroy et al., 2013; Shirley et al., 2013), but has also
been successfully applied to genotype-phenotype relationships in nonhuman organisms
(Shapiro et al., 2013). VAAST is freely available for academic research, is actively
supported through a dedicated mailing list, and is under continuous development to keep
pace with the rapidly increasing complexity of next-generation sequence data analyses.

Here we present a series of VAAST workflows covering a broad range of disease-gene
discovery applications. Basic Protocol 1 provides general variant-calling recommenda-
tions for NGS projects. We describe the preparation of NGS variant data for the VAAST
pipeline using its Variant Annotation Tool (VAT) and Variant Selection Tool (VST).
A support protocol describes how to obtain and install VAAST. In Basic Protocol 2,
we provide a series of best-practice examples for using VAAST in case-control studies
and small family studies. Basic Protocol 3 describes the use of VAAST with pedigrees.
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Additionally, we describe the use of pedigree-VAAST (pVAAST), which extends VAAST
to support large, complex pedigrees, in Basic Protocol 4. Finally, an alternate protocol
describes Omicia Opal, a commercial genomic medicine decision-support software plat-
form (Coonrod et al., 2013), which improves the VAAST result interpretation and clinical
reporting for personal patient NGS sequences by combining the powerful VAAST statis-
tics with clinical knowledge databases. Each protocol includes command lines, example
data, expected results, and interpretation of VAAST output. These protocols are designed
to train users for successful real-world applications of VAAST and pVAAST.

BASIC
PROTOCOL 1

VARIANT CALLING

The underlying goal of a VAAST analysis is to identify disease genes and disease-
causing alleles using case and control NGS datasets. Because of the complexity and
rapid development of next-generation sequencing technologies and analysis pipelines,
systematic technical differences in variant calls between cases and controls can be a
major source of false-positive results in any NGS case-control study. A number of steps
can be performed to improve the quality of a variant-calling pipeline to reduce such
technical artifacts.

Prior to Running VAAST

For instructions on downloading and installing VAAST, see Support Protocol.

Alignment

Matching the read aligner and alignment parameters for all samples (both case and
control) will help to avoid introducing alignment-specific artifacts. A series of alignment
polishing steps have become standard practice and should be implemented to improve
variant quality and reduce technical artifacts. These steps include removal of duplicate
reads, local realignment of insertions and deletions, and base-quality score recalibration
(Li et al., 2009; McKenna et al., 2010; DePristo et al., 2011) .

Variant-calling

Several high-quality variant-calling tools are freely available, and a comparison of these
tools has been reviewed elsewhere (Nielsen et al., 2011; Pabinger et al., 2013; O’Rawe
et al., 2013). Popular tools include GATK UnifiedGenotyper, SAMtools, and Atlas2 (Li
et al., 2009; McKenna et al., 2010; DePristo et al., 2011; Challis et al., 2012). All variant
callers make both false-positive and false-negative errors in variant-calling. However, the
error profile produced by different variant callers (or even the same variant caller with
different parameters or different versions) can be quite different. If cases and controls
are not called with exactly the same variant-calling tool (including software version and
run-time parameters), these differences in systematic error can manifest as false-positive
results in VAAST.

Joint calling and missing genotypes

Current versions of most variant-calling tools (Li and Homer, 2010; DePristo et al.,
2011; Wei et al., 2011) allow multiple samples to be jointly called, i.e., processed
simultaneously. Joint variant-calling has two significant advantages. First, the variant-
calling algorithm considers the alignments of all samples simultaneously to estimate the
probability that a given locus is variable in the population, resulting in more accurate
variant calls for each individual sample (McKenna et al., 2010; DePristo et al., 2011).
Second, joint variant callers such as GATK UnifiedGenotyper (McKenna et al., 2010;
DePristo et al., 2011) provide missing genotypes (i.e., ‘no calls’). By default, most
variant callers will not produce a variant call for missing genotypes. Thus, homozygous
reference sites are indistinguishable from sites where no genotype information is available
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Figure 6.14.1 Accounting for missing genotypes improves the power of VAAST. The VAAST ranks of “doped” genes
are shown on the x axis. The number of trials with a specific rank is shown on the y axis. The data presented were
generated from “doping” experiments under a dominant inheritance pattern. Known HGMD disease-associated alleles
were “doped” into three target exomes. In the “before-nocall” batch (right panel), this subset of HGMD alleles were
incorrectly coded as the reference allele. This type of error can occur in empirical datasets due to missing coverage.
In the “after no-call” batch (left panel), the same subset of HGMD variants were coded as no-call (ˆ) rather than
the reference allele. This simulates joint-variant-calling and demonstrates the importance of accounting for missing
genotypes.

(for example, due poor sequence quality or low depth of coverage). When both cases
and controls are processed through these variant-calling tools simultaneously, all variant
sites in all samples are consistently called for missing genotypes. VAAST is specifically
designed to make use of missing genotype information, which substantially improves
the signal-to-noise ratio in disease-gene searches (see Fig. 6.14.1). A lack of missing
genotype data in cases or controls can be a significant source of error for all downstream
analyses and interpretations. In addition, sites with an excess of missing genotypes
typically have higher error rates, and filtering sites with missing genotype rates of 10% or
greater can further reduce false-positive rates. Such filtering steps can either be performed
prior to VAAST or by using the variant_mask option in VAAST (see below). Note that
some variant-calling algorithms can generate missing genotype calls without joint variant-
calling, such as those employed by Complete Genomics and earlier versions of GATK
(Drmanac et al., 2010; McKenna et al., 2010; DePristo et al., 2011).

Variant filtering and quality score recalibration

Most variant callers assign a variant quality score to each variant to indicate the prob-
ability that the variant (or genotype) was incorrectly called. Numerous strategies have
been developed to mitigate false-positive variants by filtering on quality scores or other
variant metrics. More recently, algorithms have been developed that create a model
of true-positive variants trained on accurate variant calls (using HapMap3 and other
highly validated variant sites). For example, the variant-quality method implemented in
the GATK VariantRecalibrator tool can greatly increase the accuracy of disease-gene
searches (Fig. 6.14.2).

GVF Conversion

The first step in a VAAST analysis is to ensure that the variant data are in Genome
Variation Format (GVF; Eilbeck et al., 2005; Reese et al., 2010). For variant call data in
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Figure 6.14.2 Filtering on VQSR scores can be used to improve VAAST’s accuracy. Separate
VAAST searches were performed for 100 HGMD alleles (including indels) “doped” into a target
consisting of three unrelated individuals against a background of 200 individuals from the 1000
Genomes data. The graph shows the number of genes with known disease-causing variants from
HGMD that were ranked by a VAAST search in one of four categories: top 10 (<=10), top 100
(<=100), top 1000 (<= 1000), or more than 1000 (>1000). The VQSR procedure dramatically
increases the number of genes with variants from HGMD in the top 10 from about 30% to more
than 70%. This result highlights the importance of variant call accuracy when searching personal
genome data.

VCF format, this can easily be converted using the vaast_converter tool found in
VAAST/bin/vaast_tools/vaast_converter. GVF is a file format developed
by the Sequence Ontology group for use in describing sequence variants that provides
a computationally robust ontology-controlled format for deeply annotating the effect of
those variants on sequence features. The command below creates a separate GVF file for
each individual in the VCF file:

VAAST/bin/vaast_tools/vaast_converter --build hg19
name.vcf

The GVF conversion step has been completed for the example files used below.

Variant Annotation

VAT annotates the impact of variants on genomic features based on the terms and
relationships described in the Sequence Ontology (SO; Eilbeck et al., 2005). VAT outputs
its annotations in GVF Format (Reese et al., 2010), which is a sequence-variant annotation
format maintained by the SO. The format is based on GFF3, and is compatible with other
tools that parse or visualize GFF3 files.

VAT requires three files as input: (1) a GFF3 file containing sequence features (gene
models and possibly other features); (2) a FASTA file containing the genome’s sequence;
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and (3) a GVF file containing the sequence alterations that will be annotated. VAT’s
command-line options allow control over extended annotation features and memory use.
VAT annotates the functional impact of each sequence alteration (variant) in the input
GVF file when it overlaps a sequence feature in the provided GFF3 file. These annotations
are given with a Variant_effect attribute added to the final column of the GVF line.
The annotated GVF line with the added Variant_effect attribute provides details
of the impact of the sequence alteration on sequence feature in three parts:

sequence_alteration : Each variant in a GVF file is described in column three
by the SO term sequence_alteration (SO:0001059) or one of its children. These terms
describe the actual change in the genomic sequence. VAT annotates the impact of the
following sequence_alterations: SNV, insertion, deletion, MNP (multi-nucleotide
polymorphism), and complex_substitution.

sequence_feature: When a sequence alteration overlaps a sequence feature, the
Variant_effect attribute describes the feature using the SO term sequence_feature
(SO:0000110) or one of its children. These terms describe the kind of sequence feature
that is impacted by the sequence alteration. VAT can annotate the impact of variants
on any feature in the input GFF3 file that is a child of a sequence_feature. Com-
mon sequence_feature examples include gene, exon, splice_acceptor,
splice_donor, 5_prime_UTR, and 3_prime_UTR. In addition to sequence fea-
tures annotated in the GFF3 file, VAT will infer additional sequence features based
on the structure of gene models such as introns, splice sites, and initiator/termination
codons.

sequence_variant: When a sequence alteration impacts a sequence feature, a vari-
ant of that sequence feature is created. VAT uses the term sequence_variant
(SO:0001060) or one of its children to describe the functional effect of a se-
quence_alteration on a sequence_feature. VAT annotates sequence alter-
ations with terms that describe the impact of coding variants with common terms such
asstop_gained, missense_variant, andsplice_acceptor_variant. In
addition to the specific impacts of common sequence alterations on gene models, VAT
will annotate the overlap of any sequence_alteration with any sequence feature
in the GVF and GFF3 files with the general term sequence_variant.

Output and error messages are written to STDOUT and STDERR, respectively. A simple
example of a VAT command line with the required options is:

VAT --features genes.gff3 --fasta assembly.fasta
variants.gvf > variants.vat.gvf

If memory is a limitation, the chunk flag will break up sequences into N bp segments:

VAT --features genes.gff3 --chunk 50000 --fasta
assembly.fasta variants.gvf > variants.vat.gvf

With the --extended_gvf option, VAT will add additional information to many
Variant_effect attributes that provide more detail about a particular se-
quence_variant, such as the reference and variant amino acids for a mis-
sense_variant. A complete description of the SO terms and GVF format are de-
scribed on the SO Web site: http://www.sequenceontology.org.

The VAAST package includes all files necessary to annotate variants in the human
genome in the context of NCBI builds 36 (hg18) and 37 (hg19). The genome build can be
provided to VAT in the incoming GVF file (added by vaast_converter) or can be described
by the user on the command line using the --build flag.
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Variant Selection

VST condenses variant files from multiple individuals into a single condenser (CDR) file.
VST can also apply set operations across the individual input GVF files. These operations
include union (U), intersection (I), left relative complement (C), and symmetric difference
(D). VST also includes a shared (S) operation that specifies a cut-off to an intersection
style operator to exclude or include variants based upon the number of individuals that
share them.

Variant filtering with VST imposes strict assumptions about the presence or absence of
variants, and care should be taken to avoid errors introduced by missing data. If missing
genotypes are included in the GVF files, VST will utilize this information in filtering
variants. For example, the intersection of a variant where one individual has a missing
genotype will be included in the output CDR file. In contrast, the symmetric difference
of a variant where the complemented individual has a variant call but another individual
has a missing genotype will not be included. The --genotype flag will constrain set
operations to allow variants to match only if they share the same genotype.

Set operations are passed to VST with the --ops (or -o) flag in the form of a quoted
string. Individual GVF files are specified within the set operation as integers based on
the order of the files on the command line. The first GVF file is file id 0, the second is
file 1 and so on. A simple example of a VST set operation shown below uses GVF files
in the case-control example data and creates a CDR file with the union of the variants
from all three individuals:

VST --build hg19 -o 'U(0,1,2)' HG00096.gvf HG00110.gvf
HG00246.gvf > union.cdr

The resulting union.cdr file contains 412,700 variants. An --ops argument that
selects only variants common to all individuals would use the ‘I’ (intersection) set
operation:

VST --build hg19 -o 'I(0,1,2)' HG00096.gvf HG00110.gvf
HG00246.gvf > intersection.cdr

The resulting intersection.cdr file contains only 138,627 variants.

VST needs to know the length of the sequences in the assembly. This information
may have been included in the GVF files by vaast_converter or VAT upstream of VST;
however, it can be provided by VST for the human genome using the --build flag.
While VAAST was developed for use with the human genome, it can be applied to
an annotated genome assembly from any organism. Non-human data or unique human
builds can be specified to VST with a three-column (seqid, start, end) build file and
passed to VST with the --build flag. Example entries from a build file are:

#seqid start length
Scaffold01 0 140000
Scaffold02 0 20000
Scaffold03 0 34500

More advanced VST operations are described in the VAAST Quick Start Guide and in
“VAAST with Small Pedigrees” section below.

Direct VCF to CDR Conversion

For users who have variant call data in VCF format and want to convert it to CDR format
with only union operations in VST, we also provide a wrapper script (vcf2cdr.pl)
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that takes VCF file(s) as input, performs intermediate conversion steps (vaast_converter,
VAT and VST), and produces CDR file(s) as the end output. This script requires four
input files: (1) the VCF file(s), specified by the --vcf option; (2) the genome-sequence
FASTA file, specified by the --fasta option; (3) the genome annotation GFF3 file,
specified by --gff3 option; and (4) a three-column (individual ID, cohort name, and
sex), tab-delimited “info” file describing which individuals to include in each output
CDR file, specified by --info option. The individual IDs in this file should match the
IDs specified in the VCF file. An example is:

INDI1 cohort1 male
INDI2 cohort2 male
INDI3 cohort1 female

This info file instructs the script to create two CDR files: cohort1.cdr and co-
hort2.cdr. The former contains two genomes: “INDI1” and “INDI3”; the latter
contains one genome: “INDI2”.

An example command line is:

VAAST/bin/vaast_tools/vcf2cdr.pl --vcf vcf2cdr_test.vcf
--output test --build hg19 --fasta hg19_chr16.fa
--gff3 refGene_hg19.gff3 --info info.txt --cpus 3

In this command, --output specifies the output folder name; --build specifies the
genome build, which can be either hg18 or hg19; --cpus parallelize the VAT and VST
steps using three CPUs. After the execution, the final output can be found in the folder
named “test-step4, which contains one CDR file for each cohort.

SUPPORT
PROTOCOL

OBTAINING AND INSTALLING VAAST

VAAST is free for academic research use (commercial licenses are also available).
The software can be downloaded from the VAAST Web site: http://www.yandell-
lab.org/software/vaast.html.

After obtaining the VAAST tarball (VAAST_Code_Current.tar.gz), the program
can be installed in a basic development environment (Linux or OS X) with the following
command lines:

perl Build.PL
sudo ./Build installdeps
./Build test
./Build install

Additional information can be found in the included INSTALL document. Tutorials and
examples are located in the docs directory of the VAAST package. These documents
are also available for download on the VAAST Web site. For example, the VAAST
Quick Start Guide provides several detailed examples using data included in the software
distribution. The VAAST User’s Guide provides detailed documentation for all software
in the VAAST package, including a description of file formats, command-line options,
and error codes. The VAAST users mailing list provides a dedicated forum for addressing
problems or questions that are not covered in the documentation. It is linked from the
VAAST home page above or can be accessed with the following URL: http://yandell-
lab.org/mailman/listinfo/vaast-user_yandell-lab.org.
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BASIC
PROTOCOL 2

USING VAAST WITH CASE-CONTROL DATA

The case-control test dataset used in the examples below consists of exome data from
266 individuals of Northern European ancestry from the 1000 Genomes Project, with 10
cases (target) and 256 controls (background) (Abecasis et al., 2012). Two known disease-
causing variants associated with frontotemporal lobar degeneration have been “doped”
(Online Mendelian Inheritance in Man, OMIM, 2013) into the cases as heterozygous
variants (rs63750653 and rs63750944). Each of the 10 individuals in the cases has one of
two damaging variants. Both variants cause missense variants in the gene CHMP2B. The
distributed test dataset is in GVF format and available for download at http://www.yandell-
lab.org/software/VAAST/data/hg19/CurrentProtocols.

The first step in this example is variant annotation requiring a feature file (GFF3)
and a reference FASTA sequence. In this protocol we are using a GFF3 (ref-
Gene_hg19_chr3.gff3) generated from the refGene table (Karolchik et al., 2004)
and a FASTA file of the hg19 genome assembly (ucsc.hg19.fasta) (Lander et al.,
2001). Both files contain data for human chromosome 3. Below is an example command
line for annotating a single GVF file from the example data:

VAT -f refGene_hg19_chr3.gff3 -a ucsc.hg19.chr3.fasta
HG00096.gvf > HG00096.vat.gvf

The annotated GVF files are next condensed into a CDR file. This is achieved using VST
as demonstrated in the ‘Variant Selection’ section above. Here we take the union of the
10 affected individuals (i.e., all variants from all individuals):

VST --build hg19 -o 'U(0..9)' *.vat.gvf >
10cases_union.cdr

The VAAST search tool uses the CDR files generated in the prior step. Below is a
basic VAAST command line that specifies the output file (-o), the scoring method (-m
lrt), and the number of permutations (--gp 1e7). By default, VAAST will report
its progress to the terminal (STDERR). Temporary files will be written while VAAST
is running that allow VAAST to restart if interrupted (using the --restart option).
When VAAST successfully completes a run, temporary files are removed and two reports
are generated. These two output files have the file extensions .simple and .vaast.
The inputs to this command line are the reference gff3, the background CDR and the
target CDR:

VAAST -m lrt --gp 1e7 -o 10cases_output
refGene_hg19_chr3.gff3 1KG_chr3_Background.cdr
10cases_union.cdr

The first five lines of the resulting 10cases_output.simple file are below:

RANK Gene p-value p-value-ci Score
1 CHMP2B 0.0001 2.43e-18,0.000369 68.595
2 GTF2E1 0.0011 0.00048,0.00184 14.364
3 EHHADH 0.0039 0.00269,0.00522 8.87
4 DBR1 0.0102 0.00768,0.0128 4.885

The six columns for the .simple report are: rank, gene, p-value, confidence in-
terval, gene score, and a variant info field. Only the first five columns are shown
here for illustration purposes. For more information about the .simple report,
see the “Interpreting Results” section, below. CHMP2B is the top ranking fea-
ture in the 10cases_output.simple output above. The confidence interval for
CHMP2B ranges from 2.4 × 10−18 to 0.000369, indicating that further permutation is
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necessary to accurately estimate the p-value. However, the confidence intervals do not
overlap between the first and second ranking gene, indicating that the rank order is stable
and is not likely to change with additional permutation (see the “Specifying the number
of permutations” section below).

BASIC
PROTOCOL 3

USING VAAST WITH PEDIGREES

VAAST provides a number of ways to explore genomic datasets from families and re-
lated individuals. We have greatly expanded this support with the addition of pVAAST,
which applies probabilistic inheritance models and supports large pedigrees for both
rare Mendelian and common, complex diseases (Hu et al., submitted). However, when
the family size is small and complete penetrance within the pedigree can be safely as-
sumed, VST or the VAAST --trio option can be used to filter variants that do not
match the inheritance model. See Figure 6.14.3 for common VST set operations used
in trio and quartet analyses. Three examples are included with this protocol, with reces-
sive, dominant, and de novo mutation inheritance patterns; these files can be found at
http://www.yandell-lab.org/software/VAAST/data/hg19/CurrentProtocols. For each ex-
ample, a damaging variant in the CHMPB2 gene has been doped according to the
inheritance pattern. Each example is based on a sample trio dataset consisting of three in-
dividuals from the 1000 Genomes Project (Abecasis et al., 2012): two parents, NA12891
and NA12892, and their daughter, NA12878. The example data are organized as CDR
files rather than the GVFs specified for the case-control analysis above. For the reces-
sive example, two CDR files are provided, one for the parents and one for the affected
offspring.

Recessive inheritance and the --trio option

The --trio (-t) option is an alternative to VST filtering that is specifically designed
for recessive diseases in trios with unaffected parents and an affected offspring. This
option filters variants that are found in the affected children’s genomes but not found in
their parents (and thus should not be used when attempting to find de novo mutations).
In addition, when complete penetrance is specified (-pnt c), the --trio option will
filter out all variants for which the parents are homozygous or compound heterozygous

F M

C1 C2

F M

C1 C2

F M

C1

dominant: NA or I(C1,C2)
I(I(C1,C2), U(F,M))

C(I(F,C2) , U(M,C1)) or I(F,C2)
C(I(C2,U(F,M)),C(C1,M))

C(I(F,C1), M)
I(C1,U(F,M))recessive:

F M

C1 C2

F M

C1

de novo: C(C2,U(F,M,C1)) C(C1,U(F,M))

Figure 6.14.3 Example of VST set operations for small pedigrees. F,M,C represent father,
mother, and child respectively.
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under a recessive model. Below is an example of a complete VAAST command line using
the trio option:

�/projects/VAAST/bin/VAAST -m lrt -iht r -pnt c --trio
Parents_Rec.chr3.cdr -o Trio_Rec -d 1e6 -p 40
refGene_hg19_chr3.gff3 1KG_chr3_Background.cdr
Child_Rec_Chr3.cdr

The first five lines of the resulting Trio_Rec.simple file are below:

RANK Gene p-value p-value-ci Score
1 CHMP2B 3.89E-03 0.00389,0.00389 23.745
2 FGD5 0.0465 0.0315,0.0632 6.269
3 POLQ 0.0536 0.0374,0.0715 4.644
4 BCL6 1 1,1 0

In this example, CHMP2B is the highest-ranking gene on chromosome 3, with a p-value
that is an order of magnitude less than that of the second-highest ranking gene.

Small pedigree and dominant inheritance

The dominant trio example represents a scenario in which the offspring and one parent
one parents are affected. The example CDR file was filtered with VST using the following
command line:

VAAST/bin/VST -o 'C(I(0,1),2)' NA12878.vat.gvf
NA12891.vat.gvf NA12892.vat.gvf > trio_dom.cdr

The resulting Trio_IntComp.cdr file contains only those variants that are absent in
the unaffected parent and shared between the affected parent and offspring:

�/projects/VAAST/bin/VAAST -m lrt -iht d -o Trio_Dom -d
1e6 -p 40 refGene_hg19_chr3.gff3
1KG_chr3_Background.cdr trio_dom_chr3.cdr

Output from the Trio_Dom.simple file is below:

RANK Gene p-value p-value-ci Score
1 CHMP2B 3.12E-05 3.02e-05,3.39e-05 18.216
2 FAM43A 0.000106 7.96e-05,0.000135 15.388
3 DGKG 0.000133 8.98e-05,0.000181 15.603
4 EOMES 0.000152 0.000105,0.000205 9.859

Again, CHMP2B is the highest-ranking gene on chromosome 3, but in this case the
confidence intervals and p-values for the top-scoring variants are somewhat close.
When only a small family or a number of cases are available, VAAST will some-
times identify multiple genes with nearly equivalent statistical evidence. In these sit-
uations, the top-ranking genes can be further prioritized by combining the VAAST
analysis with prior information about pathways or genes that have been associated with
the disease. Tools such as Phenomizer (http://compbio.charite.de/phenomizer/) and the
KEGG pathway database (http://www.genome.jp/kegg/) can be used to automate this
process by creating a candidate list of genes potentially involved with the phenotype of
interest.

Small pedigree and de novo mutations

The number of de novo mutation candidates in a parent-offspring trio depends heavily
on the sequencing error rate. There are on average approximately 70 true positive new
mutations in a genome relative to the parents, but the rate of Mendelian Inheritance
Errors (MIEs) from NGS data can exceed the true de novo mutation rate by three orders
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of magnitude (Roach et al., 2010). Joint-calling (Li et al., 2009; McKenna et al., 2010;
DePristo et al., 2011) can greatly reduce the rate of false-positive MIEs, but even with
joint calling, the rate of MIEs typically greatly exceeds the true de novo mutation rate.
VST can be used to identify MIEs that are consistent with the pattern of a de novo
mutation. The example CDR was generated through the following VST command:

/VAAST/bin/VST --o 'C(0,U(1,2))' child.vat.gvf
parent1.vat.gvf parent.vat.gvf > trio_denovo.cdr

This VST command limits the variants in the CDR file to only those that are unique to
the child relative to the parents by taking the complement of the child versus the union
of the parents. The corresponding VAAST run is as follows:

VAAST -m lrt -iht d -pnt c -o Trio_Denovo -d 1e6 -p 40
refGene_hg19_chr3.gff3 1KG_chr3_Background.cdr
Trio_Denovo_CI_chr3.cdr

Combining the complete penetrance flag with the dominant inheritance model flag will
exclude any variant present in the background. This is an appropriate filter for most
scenarios, but may be too stringent for very large background files or for variants with
incomplete penetrance. The first five lines of the Trio_Denovo.simple file are
below:

RANK Gene p-value p-value-ci Score
1 CHMP2B 0.00389 0.00389,0.00389 9.267
2 DVL3 0.00797 0.00687,0.00915 10.85
3 BCL6 1 1,1 0
4 CCDC71 1 1,1 0

Once more, CHMP2B is the highest-ranking gene on chromosome 3, and only one other
gene is scored on the chromosome. This is a typical result for a parent-offspring trio with
joint-calling and missing genotype information, especially when looking at only a single
chromosome.

VST and VAAST with large pedigrees

VST and VAAST can also be used to analyze large pedigrees. VST can identify the
intersection of affected individuals while subtracting the variants found in unaffected
relatives. The resulting CDR file can then be analyzed in VAAST. This procedure can
greatly reduce the number of candidate variants but is not robust to genotyping errors
and requires perfect adherence to the specified inheritance pattern. For these reasons, we
recommend pVAAST (Basic Protocol 4) for all large pedigrees.

BASIC
PROTOCOL 4

USING pVAAST WITH PEDIGREE DATA

pVAAST supports a wide range of familial sequencing studies, from monogenic,
Mendelian diseases in a single small family to highly polygenic, common diseases
involving hundreds of large families. pVAAST retains all the functionality of VAAST,
but in addition integrates linkage LOD scores into the CLRT framework of VAAST.
pVAAST calculates statistical significance using a combination of permutation and
gene-drop simulation (Hu et al., 2014) to account for both the family structure and
the observed pattern of variation in cases and controls.

Basic Analysis

In addition to the input files used by VAAST, pVAAST requires a single control file and a
pedigree file for each family. The pedigree structure is represented in PED format (Purcell
et al., 2007). The individual ID in the PED file must match the ## FILE-INDEX ID
for the same individual in the corresponding CDR file, which by default is the GVF file
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name used by VST. All pedigree-related files and pVAAST parameters are specified in
the control file. Control file templates are located in the data/pvaast/ directory of
the VAAST installation. The basic parameters are described below.

pVAAST control file arguments

input_ped_cdr_files : This argument specifies the input PED and CDR file pairs
for each pedigree, separated by white space.

pedigree_representatives: This option designates an affected individual (by
ID) to represent each pedigree in the case-control analysis. If more than one family is
present, then the IDs are separated by white space. The designated individual must have
the disease-causal variant; otherwise pVAAST will not score the causal mutation (see
below).

unknown_representatives: In most scenarios, preselecting a pedigree represen-
tative from each family increases power by reducing the number of variants that are
tested in each family. However, in some scenarios, such as a single large family with a
complex genetic disease, the preferred option may be for pVAAST to score all variants
in every pedigree member before selecting the highest scoring variant in each pedigree.
This is done by setting the unknown_representatives option to “yes.”

max_prevalence_filter: An upper threshold for the disease prevalence in the
general population. pVAAST performs a grid search over a wide range of MAF and
penetrance parameters to maximize the LOD score at each variant site. This option
modifies the search space to eliminate parameters that are implausible given the disease
prevalence. Note that this option only affects the LOD score calculation, and it acts
independently of the --rate option, which affects the CLRT score calculation. As a
result, users need to set these two parameters separately.

additional_cases: In addition to pedigrees, pVAAST can also incorporate unre-
lated cases as part of the case-control portion of the analysis. The unrelated cases should
be merged into a single CDR file with the VST union operation, and the file name should
be provided here (rather than the CDR files provided in input_ped_cdr_files
option).

inheritance_model: This option should be set to either “dominant” or “recessive.”

For example, to identify a disease gene in two pedigrees that fit a recessive pattern of
inheritance, the control template file from the VAAST repository could be copied to a
local file recessive_test.ctl, and then modified to include the following options:

input_ped_cdr_files: recessive1.ped recessive1.cdr
recessive2.ped recessive2.cdr

pedigree_representatives: A02_1 B02_1
unknown_representatives: no
inheritance_model: recessive

The remaining options may be left unchanged. Here A02_1 and B02_2 are two af-
fected and sequenced individuals from the two pedigrees: recesive1 and recessive2. The
pVAAST command line would be:

VAAST -m pvaast -o recessive_test -d 1e5 -p 20
-pv_control recessive_test.ctl -k refGene_hg19.gff3
background.cdr
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Note that the command parameters of pVAAST are almost identical to VAAST except
for (1) -m pvaast option, which indicates the pVAAST algorithm should be used; (2)
--pv_control option, which provides the path to the control file; and (3) the target
CDR file(s) are specified in the control file rather than the command line.

simulate_genotyping_error: Mendelian inheritance errors in the pedigree result
from either de novo mutation or genotyping errors. To account for these errors, set
the genotyping_error_rate and simulate_genotype_error to “yes.” If
de novo mutations are of interest, no additional parameters need to be activated. The
genotyping_error_rate can be estimated from the sequence data as long as at
least one offspring and both parents are sequenced from a parent-offspring trio using the
estimate_genotype_error_rate.pl script, which requires the pv_control file
and the background CDR:

estimate_genotype_error_rate.pl recessive_test.ctl
background.cdr

penetrance_lower_bound and penetrance_upper_bound: To restrict the
analysis to a certain range of penetrance levels, penetrance boundaries can be specified.

lod_score_filter: Specifying “yes” will force pVAAST to evaluate only variants
with positive LOD scores, i.e., variants with at least some evidence for genetic linkage.

inheritance_error_filter: Specifying “yes” will eliminate variant sites con-
taining Mendelian inheritance errors. This will produce a cleaner result when genotyping
error is frequent, but will also increase the number of false negatives, in particular with
de novo mutations.

pVAAST Results and Output

Figure 6.14.4 shows the .vaast output for pVAAST, which is very similar to a regular
VAAST output but reports additional linkage information in the pedigree. The following
items are added or revised in a pVAAST .vaast output.

Score and p-values

Similar to VAAST, pVAAST reports SCORE and genome_permutation_p for
each gene. However, the score here is the CLRTp value for the gene, which is
the sum of the CLRT score from VAAST plus 2ln(10) × LOD. Correspondingly,
genome_permutation_p reports the significance of the CLRTp statistics for the
current gene.

LOD scores

The LOD_SCORE item will only be seen in a pVAAST report. The traditional LOD score
is the odds of the alternative hypothesis that the variant and the disease are linked versus
the null model that the variant and disease are unlinked, on a log 10 scale. For example,
a LOD score of 3 indicates 1000-to-1 odds in favor of linkage. The pVAAST LOD score
has a similar but not identical scale to a traditional two-point parametric LOD score.
In the same line, separated by comma, is the p-value for the reported LOD score. This
is the one-tail probability of observing the reported LOD score (or higher) when there
is no linkage between any variant in this gene and the disease-causing mutation. This
measures the significance of the LOD score. In contrast, the overall p-value measures the
significance of the combined VAAST score and LOD score.
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pVAAST Simple Output

Like VAAST, pVAAST outputs a .simple file to provide a concise summary of the
results. Below is an example of the first five lines and six columns of a pVAAST.simple
file:

RANK Gene p-value p-value-ci Score LOD
1 DHODH 0.000333 0,0.00123 47.676 1.204
2 CNTNAP4 0.000666 8.44e-06,0.00186 13.354 0
3 ZFHX3 0.001 8.07e-05,0.00241 16.118 0
4 SBK1 0.002 0.000541,0.00389 16.461 0.602

From left to right, the columns represent: rank, gene name, p-value of the gene, confidence
interval of the p-value, CLRTp score, LOD score, and variant information (the variant
column here is removed for illustration purposes). In this result, DHODH is ranked as
the first genome-wide with a LOD score of 1.204 (sum of LOD scores from the two
families). Within each family, two compound heterozygous variants are found in affected
individuals, consistent with a recessive inheritance pattern.

ALTERNATE
PROTOCOL

ACCESSING VAAST THROUGH OPAL

In addition to the stand-alone VAAST software package, we have implemented relevant
clinical workflows using VAAST in a rich genome interpretation and reporting plat-
form called Omicia Opal (http://app.omicia.com). Omicia Opal is a very user-friendly
Web-accessible, software-as-a-service informatics platform that allows researchers to
collaboratively analyze genomes by prioritizing disease-causing variants and genes, re-
ducing the noise and distilling data to clinically relevant findings. It has pre-loaded a
comprehensive set of clinical variant databases and the most popular interpretation algo-
rithms to provide a comprehensive but easy to use environment for the clinical researcher.
The details of Opal have been described elsewhere (Coonrod et al., 2013). Part of the
workflows implemented in Opal is a VAAST-based workflow for family analyses that
implement VAAST small-pedigree analyses for trios and quartets.

VAAST is seamlessly integrated with Opal via an easy-to-use graphical user interface
that makes this powerful algorithm accessible to a wide range of clinical users without
the overhead of the infrastructure and staff necessary to manage large computationally
intensive environments. Opal embeds VAAST results within a comprehensive interpre-
tation environment wherein candidate genes and variants are presented in the context of
numerous additional analyses and linked to a rich set of genome and clinical annotations
from well-established pathogenic variant databases.

Figure 6.14.5A shows the graphical interface for a family analysis where the user only
has to selected the genomes for analyses and specific a background file provided by
Opal. The variant files are previously uploaded, validated, and annotated after the user
has created an account at Opal. Opal allows for lots of interactive data manipulation and
pre-processing steps for VAAST. In addition, VAAST results for a genome under analysis
(example Fig. 6.14.5.B) are presented in a rich reporting format and directly integrated
with live clinical database links for clinical validation and analysis. The Opal system
also provides a powerful reporting infrastructure to be used in clinical laboratories and
hospital. Details on the Opal system can be found at http://www.omicia.com/what.html.

The VAAST implementation in Opal allows easy access for any clinical research group,
where workflows have been pre-validated and tested for accuracy estimates.

Identifying
Candidate Genes

6.14.15

Current Protocols in Human Genetics Supplement 81



Figure 6.14.5 (A) Opal/VAAST: simplified Trip-Analysis workflow in Omicia Opal (http://app.omicia.com).
(B) Opal/VAAST report for the DHODH gene. The VAAST report in Opal reports additional clinical annotations
for each variant such as the American College of Medical Genetics–recommended variant pathogenicity
annotation as recorded in ClinVAR, the MAF in the 1000 Genomes data, as well as clinical evidence as
provided in OMIM, ClinVAR, HGMD, LSDB, and GWAS. It also displays the genotype for each individual in
the study (for a trio: father, mother and affected child).

COMMENTARY

Background Information
Here we present detailed instructions on

the use of VAAST in disease-gene discovery
projects and Opal with VAAST for clinical
reporting projects. For small studies involv-
ing publicly available controls and a few se-
quenced cases, VAAST serves as a highly sen-
sitive variant classifier and gene-prioritization
tool. For rare Mendelian diseases segregating
in small pedigrees, VST can be used in con-
junction with VAAST to identify variants that

are likely to be damaging and that are consis-
tent with the expected inheritance pattern. For
large studies with matched cases and controls,
VAAST performs robust, genome-wide rare
variant association analysis that directly incor-
porates calibrated variant classification scores
based on phylogenetic conservation and AAS
information. pVAAST implements a highly
flexible approach for pedigree analysis that
supports a broad range of study designs—
from monogenic, Mendelian diseases in a
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single family to polygenic, common diseases
involving hundreds of families. Our most re-
cent implementation of VAAST within Opal
allows for more complex diagnostic clinical
decision support with a user-friendly, Web-
accessible interface. We hope that this guide
will serve as a useful aid that will help en-
able new discoveries through comprehensive
analysis of NGS data.

Guidelines for Understanding Results
The six columns for the .simple report

are: rank, gene, p-value, confidence interval,
gene score, and a variant info field. The full
.vaast report file contains additional infor-
mation about the specific variants contributing
to the gene score in both the cases and con-
trols and the p-value 95% confidence interval
(Fig. 6.14.6).

Rank
Gene candidates are sorted by p-value, from

smallest to largest. When two genes have the
same p-value, the VAAST score of each gene
determines the rank.

Score
The VAAST score combines variant fre-

quency data with amino acid score and phylo-
genetic conservation information using a com-
posite likelihood ratio test (CLRT). The higher
the score, the more likely that the gene contains
disease variants under the VAAST model. The
VAAST score is the Akaike Information Crite-
rion in the VAAST model, which is −2ln(λ) –
2m, where λ is the composite likelihood ratio
and m is the number of free parameters in the
model (Yandell et al., 2011; Hu et al., 2013).
The VAAST score for each variant is reported,
and the feature score is the sum of all variant
scores in a feature.

p-value
VAAST estimates the p-value using a per-

mutation test by comparing the observed
VAAST score to the scores obtained by per-
mutation. VAAST 2.0 (Hu et al., 2013) reports
the ratio of 1 + the number of successes to the
total number of permutations as the p-value
(VAAST 1.0 reports the ratio of successes to
the number of permutations, constrained by
the minimum p-value of 1/the total number
of possible permutations). Unless the sample
sizes are small, VAAST will not completely
enumerate all possible orderings of the data,
and thus the p-value for a gene is a random
variable that depends on the number of permu-
tations that may vary between VAAST runs.
For a genome-wide search in human data, the

significance threshold for a VAAST search is
� 2.4 ×10−6, or 0.05/21,000 genes. Interpret-
ing the p-value without consideration of the
confidence interval can lead to erroneous con-
clusions if the number of permutations is insuf-
ficient. For more on this point, see the “Con-
fidence Interval” and “Specifying the number
of permutations” sections below.

Confidence interval
We estimate the 95% confidence interval of

the p-value from the VAAST permutation test,
assuming that the number of successes follows
a Poisson distribution. The confidence interval
of the p-value describes the uncertainty in the
p-value estimate and is one of the most impor-
tant metrics to consider when interpreting the
results of a VAAST analysis. The more permu-
tations run, the smaller the confidence interval
around the p-value.

Variant field
The first variant field (the 6th column) from

the example 10cases_output.simple
output in Basic Protocol 2 is:

chr3:87302571;35.83;G->T;D-
>Y;0,5

chr3:87302557;31.69;A->G;N-
>S;0,5

This field provides a list of the most
likely disease-causing variants (as judged by
VAAST) in the feature. Each variant is sepa-
rated by a tab, and they are further delimited
by semicolons. The first semicolon-delimited
field is the variant’s location, the second is
the VAAST variant score, the third is the nu-
cleotide change, the fourth is the amino acid
change, and the last field gives the count values
for the variant in the background and the target.
In the example above, there are two variants
in CHMPB2 (the ones that were doped in).
These variants are absent in the background
and present with 5 copies each in the target.

Using vaast_pdf_reporter
This section provides examples of using

vaast_pdf_reporter to aid in the in-
terpretation of results from the CHMPB2
dataset presented in Basic Protocol 2. The
vaast_pdf_reporter script provides a
summary of results from a VAAST analysis:

vaast_pdf_reporter.pl
10cases_output.vaast

The output used to generate Figures 6.14.7,
6.14.8, and 6.14.9 was generated from the fol-
lowing command line:
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rank seqid gene.id p.value ci.low ci.high

0 chr3 CHMP2B 6.10e-07 2.43e-18 2.25e-06
1 chr3 GTF2E1 6.64e-03 8.44e-05 1.86e-02
2 chr3 MAP3K13 1.98e-02 2.53e-04 5.57e-02
3 chr3 DBR1 1.98e-02 2.53e-04 5.57e-02
4 chr3 PSMD2 1.98e-02 2.53e-04 5.57e-02
5 chr3 LRRFIP2 1.98e-02 2.53e-04 5.57e-02
6 chr3 UPK1B 1.98e-02 2.53e-04 5.57e-02
8 chr3 TMPRSS7 2.97e-02 2.42e-03 7.22e-02
9 chr3 IQSEC1 2.97e-02 2.42e-03 7.22e-02

Figure 6.14.7 Example table 1 from VAAST-pdf-reporter.

VAAST/bin/VAAST -m lrt -iht d
-j 0.0000026 -o 10case_ouput
-d 1e7 -p 20
refGene_hg19_chr3.gff3
1KG_chr3_Background.cdr
10cases_union.cdr

This command line includes options dis-
cussed in the “Advanced Options” section, be-
low, and produces the following output file:

10cases_output.vaast.report
.vaast.pdf

The PDF file contains several useful re-
sults, including the top ten ranked genes
(Fig. 6.14.7), a quantile-quantile (QQ)
plot of expected versus empirical p-values
(Fig. 6.14.8), and a Manhattan plot display-
ing the -log10 p-values across the genome
(Fig. 6.14.9). In this dataset, CHMPB2 is the
only gene that reaches genome-wide signifi-
cance (Figs. 6.14.7-6.14.9).

Specifying the optimal number of
permutations

The optimal number of permutations is a
tradeoff between statistical accuracy and com-
pute time. The total number of possible permu-
tations for a given set of target and background
genomes is described by the binomial coeffi-
cient (often referred to as ‘n choose k’), and
this value grows rapidly as the number of tar-
get and background genomes increases. For a
VAAST analysis with a single target genome
and 1000 background genomes, there are 1001
ways to choose a single target from the com-
bined pool of all genomes, and VAAST can
consider all possible permutations to calcu-
late the exact p-value. With 10 genomes in the

target and 256 in the background—as in the
example above—there are 4.1 × 1017 com-
binations, and it is neither possible nor nec-
essary to perform all possible permutations.
When the number of permutations specified on
the command line is less than the number of
possible permutations, VAAST randomly per-
mutes the status of the background and target
genomes.

If fewer than 100,000 permutations are
specified, p-values (and consequently gene
ranks) will often show significant random vari-
ation between VAAST runs with the same
datasets and command-line parameters. If the
confidence interval is large, p-values and gene
ranks will fluctuate from run to run. For most
applications, 10,000 permutations will be fast,
but will likely result in poor statistical reso-
lution. Increasing the number of permutations
will provide tighter confidence intervals and
more stable gene rankings.

VAAST supports two forms of paralleliza-
tion: by feature (--mp1) and by permuta-
tion (--mp2). Each of these options indicates
how many CPU cores should be allocated to
VAAST. The --mp1 option instructs VAAST
to distribute a separate feature to each core.
The --mp2 option instructs VAAST to dis-
tribute a batch of permutations, for the same
feature, to each core, allowing a single feature
to be processed in parallel by multiple cores. A
good strategy for a genome-wide analysis is to
perform an initial analysis scoring all features
in the genome using the --mp1 option, but
with a relatively small number of permutations
(-d). The p-values from this initial run will not
be accurate, and the confidence intervals will
be wide. A second VAAST analysis should be
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Figure 6.14.8 Example QQ plot from VAAST-pdf-reporter. The expected p-values are plot-
ted on the x axis and the VAAST p-values are plotted on the y axis, on a –log base 10 scale. The
gray area shades the 95% confidence intervals. The red line plots y = x, corresponding to the
scenario where the observed and expected p-values are perfectly matched. The QQ plot provides
a measure of potential inflation in Type I error that may result from systematic differences between
cases and controls. In this plot, the expected p-value is usually lower than the observed p-value,
indicating that the test is slightly conservative. This is a typical result when cases and controls are
well matched and sample sizes are small. As sample sizes and permutation counts increase, the
QQ plot becomes less conservative and more continuous. In this example, there are 10 cases and
256 controls, and only one gene exceeds the upper 95% confidence interval, CHMP2B. When
cases and controls are poorly matched, for instance due to population stratification or mismatched
bioinformatic pipelines, the observed –log p-values can be much greater than the expected values,
which indicates that Type I errors are inflated and the p-values are nonconservative. With publicly
available controls, some inflation in Type I error rate is often unavoidable, but several techniques
are available to minimize the problem, which can greatly improve the quality of the gene prioriti-
zation results (see Variant-calling section above). The solid line black line on the left side of the x
axis represents genes with a VAAST score of 0; these genes have the maximum p-value of 1 but
should be included when determining the number of multiple comparisons, because the VAAST
score includes case-control status information.

performed with the top-ranking features (e.g.,
all those features whose confidence interval
indicate that they could reach the desired sig-
nificance level). The second analysis is per-
formed using --mp2, a higher permutation
number, and the --features option. The -
-gw option in VAAST automates this two-step
procedure. For example, the following com-
mand performs a genome-wide VAAST search
with 2,000 permutations using parallelization
by features. From the results of the first run,
VAAST then selects genes with low p-values
and performs a second round of analysis with
1 million permutations using parallelization
by permutations. Throughout the whole pro-

cess, 50 CPUs are used, as specified by the -p
parameter:

VAAST/bin/VAAST -m lrt -iht d
-o 10case_ouput --less_ram
--gw 1e7 -p 20
refGene_hg19_chr3.gff3
1KG_chr3_Background.cdr
10cases_union.cdr

Advanced Options
VAAST has many options that can be used

to improve the speed and accuracy of VAAST
searches, which are fully documented in the
VAAST User’s Guide. The most frequently
used options are discussed below.
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Figure 6.14.9 Manhattan plot for the CHMP2B. The x axis is an index of the genes on chromo-
some 3, and the y axis is the negative log10 VAAST p-value. The gray dashed line represents the
genome-wide significance level for human data (see text). CHMP2B is the only gene that achieves
genome-wide significance.

General options
-c --chrom: Specifies specific chromo-

some(s) to be analyzed.
--mask_regions: Specifies a user pro-

vided BED file identifying genomic positions
or regions that will be masked from the analy-
sis (i.e., not scored). This option can be useful
when excluding regions enriched for known
false positives or to exclude specific sites
with increased missing genotype or Hardy-
Weinberg disequilibrium rates. Note that the -
-variant_mask option in VAAST 1.0 only
masks individual variants (not regions), and
may be faster when only individual variants
are included in the masking file.
--regions: This option is similar to --

mask_regions, but instead specifies a BED
file containing only those regions which will
be scored.
--restart: This option is used to restart

a VAAST job that was interrupted (e.g., sys-
tem rebooted or job was killed). VAAST will
read the temporary files in the output directory
to resume from the point where the job was
interrupted.

Disease and population options
-iht --inheritance: This option

applies an inheritance model variant filter for

damaging alleles. Arguments are r (reces-
sive) or d (dominant). The dominant option
allows only one allele in each feature to re-
ceive a score in each individual. The recessive
option allows up to two alleles to receive a
score in each individual (the best-scoring ho-
mozygous variant or the two best scoring het-
erozygous variants). By default, all variants
with a positive score are evaluated for all indi-
viduals. For large genes, the recessive option
can help mitigate batch effects in which rare
variants are more frequent in cases relative to
controls.

-pnt --penetrance: Specifies
whether damaging alleles are expected to
be fully penetrant. By default, the flag is set
to i to indicate incomplete penetrance. The
behavior of -pnt c (complete penetrance)
is different under the two inheritance (dom-
inant/recessive) models. Under a recessive
model with complete penetrance, any target
variant that is homozygous in any of the
background individuals will not be scored.
In addition, under the recessive model, any
combination of two heterozygous alleles in
the same feature that are shared between any
target and any background genome will not
be scored. Under a dominant model, any
variant that is shared between any target and
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any background genome will be ignored.
The complete penetrance option imposes a
very stringent filter that does not take into
consideration missing genotypes and thus
should be used with great caution.
-lh --locus_heterogeneity: By

default this option is set to “yes.” Setting lo-
cus heterogenetiy to “n(o)” applies a filter that
requires every individual in the target to have
a genotype that is scored by VAAST in or-
der for a feature to receive a score. Under the
dominant inheritance model, this requires ev-
ery individual in the target to have at least one
allele with a VAAST score greater than 0 in
the feature. Under the recessive model, every
individual must have at least two alleles with a
VAAST score greater than 0. Like penetrance,
setting locus heterogeneity to “n” applies a
stringent filter that may result in false nega-
tives due to missing data. This option should
be reserved for monogenic Mendelian dis-
eases to test the hypothesis that a single gene
can fully explain the phenotype in the target
population.
--protective: By default, VAAST

only scores variants where the minor allele
frequency (MAF) is higher in the target than
the background. The protective option allows
VAAST to also consider potential protective
alleles where the MAF is lower in the target
than the background.
--rate: This option sets the maximum

MAF of variants in the background genomes,
penalizing the score of variants that exceed this
frequency in the background genomes. This
flag can be used to restrict the analysis to rare
variants.

Feature options
--parent_feature: Determines

which features in the GFF3 file will be scored
by VAAST. The default is mRNA. One record
will be present in the VAAST output for each
parent_feature in the GFF3 file.
--child_feature : Because scoring

transcripts is a primary goal of a VAAST anal-
ysis and because transcripts can be disconti-
nous features with exons separated by introns,
VAAST provides a child_feature option
that will allow only the portions of a par-
ent_feature to score that have a corre-
sponding child_feature region. This op-
tion describes the child feature in the GFF3
file that will contribute to the score in the par-
ent feature. Features in the GFF3 file use the
Parent attribute to describe the parent/child
relationship between features (i.e., describe
which CDSs belong to which mRNA). All fea-

tures given to the child_feature option
must be annotated in the GFF3 file because
VAAST will not infer features. When the --
all_variants option is specified, the de-
fault value is “exon”; otherwise, the default
value is CDS.
--features: When passed a comma-

separated list of parent_feature IDs
(for example: NM_0123456,NM_0654321)
VAAST will only score the given features. In
addition, the --features option can take a
file containing a separate feature ID on each
line. This flag can be used to obtain the VAAST
score on a single gene or transcript or to re-
fine the p-value on a limited set of features
that appear to be significant in a genome-wide
VAAST run.

Scoring options
-k --codon_bias: Enabled by de-

fault, this instructs VAAST to include amino
acid substitution frequencies information in
the composite likelihood ratio calculation.
We highly recommend enabling this option
for all VAAST runs, except when the --
protective option is used. In VAAST
2.0, the amino acid substitution matrix
also incorporates the phylogenetic conserva-
tion information, as measured by PhastCons
scores (generated from multiple-species pro-
tein alignment in vertebrates; Yang, 1995;
Meyer et al., 2013).
-e --all_variants: This option in-

structs VAAST to score all variants in a fea-
ture, including synonymous and noncoding
variants.
-d --gp: This parameter sets the number

of permutations for each feature. This option
can be combined with --features or --
regions to provide an increased permuta-
tion count for particular genes.
--gw: If this parameter is set, VAAST will

first perform a genome-wide search with lower
number of permutations, identify highly sig-
nificant features, and then perform intensive
permutations over these features to get more
accurate p-values. This parameter takes an in-
teger that specifies the maximum number of
permutations for each feature. For genome-
wide VAAST searches, using --gw generates
the same results as -d option, but is much
more efficient.
-g --grouping: This option instructs

VAAST to group together variants in the target
genome when the number of occurrences of
the minor allele is below the given value. The
default value is 4. A value of 0 will disable
grouping.
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--mean_prior: This option changes the
behavior of VAAST for variant grouping. By
default, the weight of grouped variants is the
product of individual variants. If this option
is set, VAAST will instead use the geometric
mean of the weights from all grouped variants
as the final weight. We recommend setting this
option when the number of target genomes is
greater than 10. This option may become a
default value for larger sample sizes in future
releases.
-j --significance: Establishes a

desired threshold for statistical significance.
With -j, VAAST will stop the permutation
test when the p-value is less than or greater
than the specified value with 95% confidence.
Often -j is set for 2.4 ×10−6 (genome-wide
significance after multiple-test correction on a
genome with 21,000 genes).
--min_suc: Forces VAAST to keep run-

ning permutation tests on a gene until at least
the given number of tests in the permutation
have a CLRT score higher than the specified
value. The number of permutations is still con-
strained by the-d option. If the maximal num-
ber of permutations (-d) is reached, VAAST
will stop regardless of the --min_suc
parameter.
--indel: Instructs VAAST to score ge-

nomic insertions and deletions (indels) that
overlap features. Empirically, indels are more
sensitive to differences in sequencing plat-
forms and variant-calling pipeline than SNVs,
and thus are more likely to introduce false posi-
tive signals, particularly when the controls and
cases are not matched.
--splice_site: Allows VAAST to

score variants that affect splice donor and
splice acceptors, if these variants are annotated
in the CDR file. This functionality will even-
tually be enabled by default but is currently in
beta testing.

The example below uses several of the ad-
vanced options described above. Disease and
population options including dominant inher-
itance pattern (-iht d), indel scoring (--
indel), disabling grouping (-g 0), setting
significance threshold (-j 0.0000026),
and incomplete penetrance (-pnt i). This
example also specifies several performance
parameters: parallel processing with 10 CPUs
(-p 20) and perform 10,000,000 permuta-
tions per feature (-d 1e7):

VAAST/bin/VAAST -m lrt -iht d
-g 0 -j 0.0000026 -o
10case_ouput -d 1e7 -p 20
--indel

refGene_hg19_chr3.gff3
1KG_chr3_Background.cdr
10cases_union.cdr.

Mitigating the Effects of Mismatched
Cases and Controls

The results of VAAST analyses are often
not as clear as the examples presented above.
Many studies sequence a relatively small num-
ber of affected individuals and compare the
resulting variants directly to publicly avail-
able control data, such as the 1000 Genomes
(Abecasis et al., 2012). This is a highly
efficient approach but can result in substan-
tial inflation in Type I error rates due to dif-
ferences in sequencing platform and variant-
calling pipelines, and in some cases, poorly
matched target and background populations.
The extent of false-positive rate inflation can
be evaluated by visual inspection of the QQ-
plot (Fig. 6.14.8). When false-positive rates
are high, the goal of a VAAST analysis
shifts from identifying statistically significant
disease-gene associations to disease-gene pri-
oritization and discovery. This effort often in-
volves careful evaluation of the top genes in
a VAAST analysis to identify candidates for
follow-up functional validation or sequenc-
ing experiments. Problematic variants can be
identified by comparing allele frequencies in
other publicly available datasets, such as the
NHLBI exome variant server [NHLBI GO
Exome Sequencing Project (ESP), Seattle].
Discordant allele frequencies between large
databases are an indication that the variant may
be poorly represented in the VAAST back-
ground dataset, or that the variant is an artifact
of certain variant-calling pipelines. A visual
inspection of the aligned reads supporting a
variant call using Samtool’s tview (Li et al.,
2009) or Integrative Genome Viewer (Robin-
son et al., 2011) can identify potential artifacts
resulting from problematic alignments or poor
read support. For variants that pass bioinfor-
matic validation, confirmatory genotyping is
often a cost-effective strategy.

A complementary approach for mitigating
the effects of mismatched cases and controls
involves the creation of an a priori list of
genes or variants that are likely false posi-
tives (Kohane et al., 2012). This list can be
generated by evaluating a second target set
with an unrelated phenotype that matches
the sequencing protocol and variant-calling
pipeline of the original target set. The second
target set can be compared to the background
using VAAST to identify the top-ranking Identifying
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genes and variants, which will often be the
result of systematic differences in sequenc-
ing protocols and variant-calling pipelines. In
our experience, large genes with repeated do-
mains or many homologs, such as titan, mucins
(Kamphans et al., 2013), and zinc fingers, are
particularly prone to sequencing and variant-
calling batch effects.
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